Detection and Species Identification of Malaria Parasites by Nested-PCR: Comparison with Light Microscopy and with SD BIOLINE Malaria Ag Test in Luanda, Angola

García Nazaré Pembele¹, Lázara Rojas Rivero² and Jorge Fraga²*

¹Departamento de Malaria, Instituto Nacional de Saúde Pública, Luanda, República de Angola.
²Departamento de Parasitología, Instituto de Medicina Tropical “Pedro Kourí”, La Habana, Cuba.

Authors’ contributions

This work was carried out in collaboration between all authors. Author GNP coordinated data collection, performed the light microscopy and RDT, carried out the DNA extraction and review the clinical profiles of patients. Author LRR participated in the laboratory coordination and edited and contributed to the draft manuscript. Author JF designed the study, wrote the protocol, carried out the molecular PCR, performed the statistical analysis, and wrote the first draft of the manuscript. All authors read and approved the final manuscript.

Abstract

Background: Malaria is the infectious disease causing the highest morbidity and mortality in Angola. Existing tools for the diagnosis of malaria include microscopy, rapid diagnosis tests (RDTs) and molecular tools. Nested-PCR is commonly used as a reference technique in the diagnosis of malaria due to its high sensitivity and specificity. The present study aims to evaluate the accuracy of light microscopy and SD BIOLINE Malaria Ag in the detection of Plasmodium spp. infection, using the nested-PCR as a reference method, and to determine the Plasmodium species in the study populations (Luanda, Angola) using this molecular tool.

*Corresponding author: Email: fraga@ipk.sld.cu, jorgefragan@gmail.com;
Methods: Blood samples were obtained from patients with clinical suspicion of malaria. Malaria was diagnosed by light microscopy, SD BIOLINE Malaria Ag and nested-PCR, used as a reference method, with *Plasmodium falciparum*, *P. vivax*, *P. malariae*, *P. ovale* and *P. knowlesi* being detected when possible. The sensitivity, specificity, positive, and negative predictive values (PPV and NPV) of microscopy and SD BIOLINE Malaria Ag were compared using the McNemar's test and the weighted generalized score Chi-squared test for paired data.

Results: A total of 225 subjects were studied. SD BIOLINE Malaria Ag was significantly more sensitive than microscopy (87.65% versus 71.60%), and was substantially correlated (κ = 0.64) with the reference method. Nested-PCR detected 36.0% (81/225) cases, 80 cases (98.8%) infected with *P. falciparum* and 1 case as *P. malariae* (1.2%), with no mixed infections.

Conclusion: The findings of this study support the need to use RDT in the diagnosis of *Plasmodium*. PCR could appear to be a useful method for detecting *Plasmodium* parasites during active malaria surveillance in Angola. This study contributes to wide knowledge about the presence of *Plasmodium* species in Angola.

Keywords: Nested-PCR; RDT; microscopy; malaria; Plasmodium.

1. INTRODUCTION

Malaria is an ancient protozoan parasitic disease that is a major health problem in tropical and subtropical countries throughout the world [1]. Largely based on Polymerase Chain Reaction (PCR) results, the number of species of human malaria parasites detected has increased from four to six within only 10 years [2]. The known causative agents of human malaria include *Plasmodium falciparum*, *Plasmodium vivax*, *Plasmodium malariae*, *Plasmodium ovale*, and the recently included *Plasmodium knowlesi*, which is still recognized as a zoonotic species. Molecular methods also highlighted both the existence of two distinct non-recombining species of *Plasmodium ovale* (classic type *Plasmodium ovale curtisi* and variant type *Plasmodium ovale wallikeri*) [3,4].

In 2013, malaria produced 198 million cases and caused an estimated of 584,000 deaths, mostly among African children. In Angola, malaria is a major public health problem, with 3.7 million cases per year reported by National Malaria Control Program, two-thirds of which occur in children under 5 years [5]. According to Ministry of Health estimates, *P. falciparum* accounts for 92% of infections, followed by *P. vivax* in about 7% of cases and *P. malariae* (3%) [5,6]. Fançony et al. [6] reported the existence of single and mixed infections with the two *P. ovale* species (*P. ovale curtisi* and *P. ovale wallikeri*) in Angola patients. Malaria misdiagnosis is an important cause of additional morbidity and mortality [7]. Appropriate diagnosis is not only important for ensuring prudent use of anti-malarial medications, and facilitating correct prognosis based on appropriate differential diagnosis [8], but also for tracking malaria elimination efforts [9-11]. However in general the information regarding malaria species in Angola is limited [6]; for that reason it is important to contribute to more completely determine the species in different study population and regions of Angola, including the detection of the five human species previously described.

Existing tools for the diagnosis of malaria include light microscopy, rapid diagnostic tests (RDTs) and nucleic acid detection test [12-13]. Microscopic detection of parasites on Giemsa-stained blood smears has been the mainstay for malaria diagnosis in laboratories for more than a century. This method is relatively simple and required minimal training of the microscopist; with an average sensitivity of about 50–100 parasites per microliter, it is an imperfect gold standard [14-15]. Consequently, the quality of the results varies considerably from one lab to another, mainly due to the level of expertise of microscopists, quality of reagent and equipment, procedures, workload capacity and inefficient quality control procedures [7,16].

RDTs are immunochromatographic tests designed to detect parasite products in human blood. These methods are increasingly being used for malaria diagnosis because they are rapid and easier to use especially in resource limited settings and do not require trained personnel or special equipment [9]. However, their use is limited due to lack of sensitivity for *P. vivax*, *P. malariae* and *P. ovale* [17]. To improve the accuracy of malaria diagnosis and avoid unnecessary treatment, the World Health Organization (WHO) recommends parasitological confirmation of malaria whenever possible, by microscopy or by RDTs [16,18].
Molecular detection methods of Plasmodium have an important role to play in the efforts to control, eliminate and eventually eradicate malaria [19]. There are two basic approaches for species detection, single PCR and nested-PCR. In general nested-PCR is more sensitive than single PCR [19]. The nuclear small subunit (SSU) rRNA genes are targets extensively used for the molecular detection of human malaria parasites. These genes are known to have highly conserved regions and their copy numbers range from 4 to 8. For these characteristics these are suitable genes for phylogenetic studies and molecular detection of Plasmodium spp. parasites [2]. Molecular detection methods for malaria parasites detect low-level malaria parasitemias that are missed by microscopy and RDTs [20]. The PCR is highly sensitive and has been widely used for diagnosis, confirmation of diagnosis, epidemiological studies, drug efficacy assessment and to measure the accuracy of microscopy and RDTs [21-26]. The PCR has been used in surveillance as a performance measurer of microscopy and RDTs [7,22,27,28].

The goals of this study were to determine the accuracy of light microscopy and the RDT SD BIOLINE Malaria Antigen (Ag) (05FK40, Standard Diagnostic, Korea) in the detection of Plasmodium spp. infection in Luanda, using the nested-PCR as a reference method, and to identify the Plasmodium species in the studied populations.

2. METHODOLOGY

2.1 Patients and Study Design

A total of 225 patients with clinically suspected malaria admitted in 10 health centers of Luanda (Kassequel, Samba, Rangel, Sapú II, Zango I, Boa Vista, Funda, Zango II, Km 12 and Kilamba), Angola, during December 2013 to March 2014 were included in the study. Fresh finger-prick blood samples for light microscopy and SD BIOLINE Malaria Ag were collected from each patient.

In addition, 3-5 drops of blood were spotted onto filter paper (Whatman® 3MM Chr, Whatman International Ltd., Maidstone, England). Each filter paper sample was dried at room temperature and stored at 4°C in separate plastic packets to avoid cross contamination for nested-PCR analysis. The whole blood sample and dried filter paper were collected simultaneously. The dried filter paper samples were transported to Molecular Biology Laboratory, Parasitology Department, Institute of Tropical Medicine “Pedro Kourí” (IPK), Havana, Cuba in iceboxes (0-5°C). The DNA extraction and nested-PCR were performed at IPK.

2.2 Microscopy

Thick and thin blood films were prepared. The slides were stained with 10% of Giemsa (Merck, Darmstadt, Germany) for 15 min and screened under an oil immersion (Olympus microscope CX21, Tokyo, Japan) for Plasmodium spp. parasites by four independent technicians. Slides were considered as positive only after being confirmed by two of more technicians. Parasite density was determined as the number of parasites per 200 leukocytes on the assumption of an average leukocyte count of 8000/µl of blood. A result was considered negative if no parasites were detected per 200 leukocytes.

The four technicians for microscopy detection were well trained, weeks before by theoretical and practical sections on: Malaria diagnosis, blood collection, thick and thin blood smear preparation, Giemsa staining and slide reader [29].

2.3 Rapid Diagnostic Test (RDT)

SD BIOLINE Malaria Ag test kit (05FK40, Standard Diagnostic, Korea) is a three-band lateral-flow immunochromatographic antigen detection test in a cassette format. Testing was carried out according to the manufacturer’s instructions. Finger-prick blood was used for the rapid assay. The kit is a one step, rapid, qualitative and differential test for the detection of Plasmodium lactate dehydrogenase (pLDH) specific to P. falciparum and pan specific to other Plasmodium species (P. vivax, P. malariae or P. ovale). A unique positive PfPfLDH line represents a P. falciparum infection whereas a unique pan- pLDH line indicates an infection with one or more of the non-falciparum species. The presence of both test lines indicates either an infection with P. falciparum or a mixed infection with P. falciparum and one or more of the non-falciparum species. In cases where the control line did not appear, the results were interpreted as invalid and the test repeated with a new device.

2.4 DNA Extraction

Parasites’ DNA was extracted from the blood spotted on Whatman® 3MM filter paper samples. A 3-mm² square piece of blood-impregnated filter
paper (~15 μl) was excised using a puncher and transferred into a 1.5 ml tube and stored at −20°C until use. DNA was extracted using a QIAamp DNA mini kit (Qiagen, Germany), according to the manufacturer's instructions, and then eluted into 100 μl of sterile double-distilled water. DNA was stored at -20°C, and 2.0 μl aliquots were used for each PCR.

2.5 Nested-PCRs

For the detection and identification of Plasmodium species we performed and optimized the nested-PCR method described as NP-2013 protocol, an update for the widely used NP-1993 to NP-2005 (SSU rRNA) protocols for all human malaria parasites molecular detection [2]. For the Plasmodium genus detection a first PCR was done with specific primers (rPLU1 and rPLU5) followed by a second reaction using the primers rPLU3 and rPLU4. All genus specific nested PCR-positive results were analyzed to species level using the second nested-PCR in 5 separate reactions as reported previously: rFAL1/rFAL2 (P. falciparum); rVIV1/rVIV2 (P. vivax); rMAL1/ rMAL2 (P. malariae); PkF1140/ PkR1550 (P. knowlesi) and rOVA1WC/ rOVA2WC (P. ovale) (Table 1), using the PCR amplification of the first reaction (rPLU1 and rPLU5) as a DNA template.

All PCR was performed in 25 μl total volume, each containing 1X Q solution and 1X CoralLoad PCR buffer including 1.5 mM MgCl₂, 125 μM of each deoxynucleoside triphosphate and 0.5 U HotStar Taq Plus DNA Polymerase (Qiagen, Hilden, Germany). The additionally added MgCl₂ and primers varied as detailed in Table 1. The first PCR round used 5 μl of extracted DNA from the blood spotted on filter paper samples. The second PCR reactions used 2 μl of the PCR product obtained for the first PCR. The amplification conditions for all PCR reactions are shown in Table 1.

Thermal cycling was performed in a MyCycler™ (Bio-Rad, Foster City, CA, USA). Each amplification run included two negative controls (ultrapure water and a negative control of DNA extraction) and one positive control (DNA extracted from positive clinical samples of each Plasmodium spp). For nested-PCR reactions, an additional negative control was added, consisting of 2 μl of the negative control reaction of the first run of PCR.

To visualize the products of the nested-PCR, analysis on a 2% agarose gel in 0.5 X tris-borate-EDTA buffer and stained with ethidium bromide (0.5 μg/ml) was used to verify the amplified product size and to check for non-specific amplification. Electrophoresis visualization was carried out using a compact imaging system U: Genius (Syngene, UK). PCRs were considered positive if the specific amplification of the expected base pair size was observed (Table 1).

2.6 Statistical Analysis

Predictive values and diagnostic sensitivity and specificity of microscopy and RDT, with nested-PCR as the "reference method" were determined using 2 x 2 contingency tables. Exact 95% confidence intervals were calculated. All the results were calculated using the EPIDAT version 3.1 program (Dirección Xeral de Saude Pública, Organización Panamericana de la Salud, Galicia, Spain). In order to assess whether the various methods rendered significantly different results in terms of parasite detection sensitivity and specificity and predictive values, P-values were calculated with the McNemar test (sensitivity and specificity) [33] or the weighted generalized score Chi-squared test (PPV and NPV) for paired data [34]. Each 2×2 comparison was analyzed with the online module of Graphpad (http://graphpad.com/quickcalcs/McNemar1.cfm).

Statistical significance was considered at the probability level of P<0.05. The kappa coefficient (Cohen's kappa coefficient as a measure of agreement for qualitative items) was determined to confirm the consistency of the results among the diagnostic tools. The kappa values were used to categorize the strength of agreement between the microscopic examination and RDT with the nested-PCR. Values were interpreted with the Landis and Koch classification [35]: poorly correlated (<0), slightly correlated (0.0-0.2), fairly correlated (0.21-0.40), moderately correlated (0.41-0.60), substantially correlated (0.61-0.80), and perfectly correlated (0.81-1.0).

2.7 Ethical Approval

Ethical approval for the study was obtained from de Angola Ministry of Health Ethics Committee. Written informed consent was obtained from all adults willing to participate in the study with a parents or guardian respond giving consent from children. Blood samples were collected only after written consent was given. Patients who tested positive by microscopy or RDT were provided with antimalarial treatment by a nurse or physician according to national guidelines [36].
Table 1. PCR primers and conditions

<table>
<thead>
<tr>
<th>Species/genus</th>
<th>Primer name</th>
<th>PCR primers (5’-3’)</th>
<th>Size (base pair, bp)</th>
<th>Reagent concentrationsa</th>
<th>Amplification conditions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus—nested 1</td>
<td>rPLU1</td>
<td>TCAAAGATTAAGCCATGCAAGTGA</td>
<td>~1,670</td>
<td>Primer: 0.25 µM</td>
<td>Initial denaturation, 95°C for 5 min; 25 cycles of 94°C for 1 min, 58°C for 1 min, and 72°C for 2 min; final extension, 72°C for 5 min</td>
<td>[30]</td>
</tr>
<tr>
<td></td>
<td>rPLU5</td>
<td>CCTGTTGTGCTCTAAACTTC</td>
<td></td>
<td>MgCl₂: 2 mM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genus—nested 2</td>
<td>rPLU3</td>
<td>TTTTTATAAGGATAACTACGAAAAAGC</td>
<td>240</td>
<td>Primer: 0.25 µM</td>
<td>Initial denaturation, 95°C for 5 min; 30 cycles of 94°C for 1 min, 64°C for 1 min, and 72°C for 2 min; final extension, 72°C for 5 min</td>
<td>[30]</td>
</tr>
<tr>
<td></td>
<td>rPLU4</td>
<td>TACCGTCATAGCCATGTTAGCCAATAACC</td>
<td></td>
<td>MgCl₂: 2 mM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. falciparum</td>
<td>rFAL1</td>
<td>TAAAACCTGGTTGGAAAACAAAAATATATT</td>
<td>206</td>
<td>Primer: 0.25 µM</td>
<td>Initial denaturation, 95°C for 5 min; 30 cycles of 94°C for 1 min, 58°C for 1 min, and 72°C for 2 min; final extension, 72°C for 5 min</td>
<td>[30]</td>
</tr>
<tr>
<td></td>
<td>rFAL2</td>
<td>ACACAATGAACTCAACTGACTACGCT</td>
<td></td>
<td>MgCl₂: 2 mM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. malariae</td>
<td>rMAL1</td>
<td>ATAACATAGTTGTAAGTAAGAATAACGC</td>
<td>145</td>
<td>Primer: 0.25 µM</td>
<td>Initial denaturation, 95°C for 5 min; 30 cycles of 94°C for 1 min, 58°C for 1 min, and 72°C for 2 min; final extension, 72°C for 5 min</td>
<td>[30]</td>
</tr>
<tr>
<td></td>
<td>rMAL2</td>
<td>ATACCAACATCTGCTGCTATACAAAAACTAACTGCT</td>
<td></td>
<td>MgCl₂: 2 mM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. vivax</td>
<td>rVIV1</td>
<td>CGCTTCTAGCTTAAATACCATAACACAGCT</td>
<td>121</td>
<td>Primer: 0.25 µM</td>
<td>Initial denaturation, 95°C for 5 min; 30 cycles of 94°C for 1 min, 58°C for 1 min, and 72°C for 2 min; final extension, 72°C for 5 min</td>
<td>[30]</td>
</tr>
<tr>
<td></td>
<td>rVIV2</td>
<td>ACTTTCTAGCTAATCCACATAACACGCT</td>
<td></td>
<td>MgCl₂: 2 mM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. ovale spp.</td>
<td>rOVA1WC</td>
<td>TGTAGTATTCGAGCG</td>
<td>659–662</td>
<td>Primer: 0.25 µM</td>
<td>Initial denaturation, 95°C for 5 min; 30 cycles of 94°C for 1 min, 58°C for 1 min, and 72°C for 2 min; final extension, 72°C for 5 min</td>
<td>[31]</td>
</tr>
<tr>
<td></td>
<td>rOVA2WC</td>
<td>TATGTACCTTTGTTAAGCCCTT</td>
<td></td>
<td>MgCl₂: 2 mM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. knowlesi</td>
<td>PkF1140</td>
<td>GATTCATGTTTCTATACATATACACAGCTT</td>
<td>410</td>
<td>Primer: 1 µM</td>
<td>Initial denaturation, 95°C for 5 min; 35 cycles of 94°C for 1 min, 50°C for 1 min, and 72°C for 1 min; final extension, 72°C for 5 min</td>
<td>[32]</td>
</tr>
<tr>
<td></td>
<td>PkR1550</td>
<td>TCTTTCTCCGGG GATTAGAACCTC</td>
<td></td>
<td>MgCl₂: 2 mM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Primer concentrations are listed per primer; the total MgCl₂ concentration in the reaction mix is given (1.5 mM of which is included with the PCR buffer, as explained in Material and Methods)
3. RESULTS

A total of 225 patients with suspected malaria based on clinical presentation were enrolled and screened for Plasmodium parasite in the course of the study. Among the study participants, 34.7% (78/225) of the patients were malaria positive by microscopy, all diagnosed as P. falciparum infection. No other Plasmodium species, either in single or mixed infections, were detected by the microscopists. However, 44.4% (100/225) cases were positive by RDT, all with specific diagnosis of P. falciparum. Nested-PCR was used as a reference method and 36.0% (81/225) cases were positive to Plasmodium spp.: 80 cases (98.8%) infected with P. falciparum and 1 case with P. malariae (1.2%). No mixed infections were detected (Table 2). Fig. 1 shows the PCR results of 19 clinical samples.

Table 2. Results of Plasmodium spp. detection using light microscopy, RDT and nested-PCR in patients from Luanda health centers

<table>
<thead>
<tr>
<th></th>
<th>Microscopy</th>
<th>RDT</th>
<th>Nested-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>78 (34.7 %)</td>
<td>100 (44.4 %)</td>
<td>81 (36.0 %)</td>
</tr>
<tr>
<td>Negative</td>
<td>147 (65.3 %)</td>
<td>125 (55.6 %)</td>
<td>144 (64.0 %)</td>
</tr>
<tr>
<td>Total</td>
<td>225</td>
<td>225</td>
<td>225</td>
</tr>
</tbody>
</table>

Fig. 1. Agarose (2%) gel electrophoresis analysis of Plasmodium nested-PCRs from 19 clinical samples of patients with clinical suspicion of malaria attended in Luanda health centers

MM: Molecular weight marker GeneRuler™ 100 bp DNA ladder (MBI Fermentas), with band sizes indicated on the left in base pairs. Size indication of the PCR fragments are depicted on the left of the gels in base pairs. On top the code of clinical samples. PC: positive control. NC1: negative control. NC2: negative control of the first PCR runs (rPLU1-rPLU5). The results (positive or negative) of microscopy examination, RDT and nested-PCR (rPLU3-rPLU4) including Plasmodium specie detected (F: P. falciparum; M: P. malariae) are shown at bottom.
Microscopy showed a moderate measure of agreement (κ = 0.58) with the reference method, nested-PCR for *Plasmodium* detection. Microscopy correctly identified 58 out of 81 PCR-positive *Plasmodium* spp. infections (71.6% sensitivity; CI95 61.2-82.0) and 124 out of 144 PCR-negative samples (86.1% specificity; CI95 80.1-92.1), with PPV of 74.4% and NPV of 84.4%.

SD BIOLINE Malaria Ag correctly identified 71 out of 81 PCR-positive *Plasmodium* spp. infections (87.7% sensitivity; CI95 79.9-95.4) and 115 out of 144 PCR-negative samples (79.9% specificity; CI95 72.9-86.8), with PPV of 71.0% and NPV of 92.0% (Table 3). RDT showed a substantially correlated (κ = 0.64) with the reference method. In direct comparison to microscopy, the RDT had significantly higher sensitivity and negative predictive value. However the specificity and positive predictive value had significant higher for microscopy in comparison to RDT (Table 3).

For diagnosis of *P. falciparum* and *P. malariae* the results of microscopy and RDT showed the same results were obtained overall for the samples (Table 4). However for diagnosis of *P. malariae* in only one sample was detected by nested-PCR; this sample was positive by RDT but not by light microscopy.

The concordant and discordant results of light microscopy, SD BIOLINE Malaria Ag and nested-PCR are summarized in Table 5.

Table 3. Sensitivity, specificity, predictive values of microscopy and RDT with nested-PCR as reference method

<table>
<thead>
<tr>
<th></th>
<th>PCR positive (n=81)</th>
<th>PCR negative (n=144)</th>
<th>Sensitivity (%) (CI95)</th>
<th>Specificity (%) (CI95)</th>
<th>PPV (%) (CI95)</th>
<th>NPV (%) (CI95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>58</td>
<td>20</td>
<td>71.6</td>
<td>86.1</td>
<td>74.4</td>
<td>64.4</td>
</tr>
<tr>
<td>(n=78)</td>
<td></td>
<td></td>
<td>(61.2-82.0)</td>
<td>(80.1-92.1)</td>
<td>(64.0-84.7)</td>
<td>(78.1-90.5)</td>
</tr>
<tr>
<td>Negative</td>
<td>23</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n=147)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD BIOLINE malaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>Positive</td>
<td>71</td>
<td>87.7</td>
<td>79.9</td>
<td>71.0</td>
<td>92.0</td>
</tr>
<tr>
<td>(n=100)</td>
<td></td>
<td></td>
<td>(79.9-95.4)</td>
<td>(72.9-86.8)</td>
<td>(61.6-80.4)</td>
<td>(86.8-97.2)</td>
</tr>
<tr>
<td>Negative</td>
<td>10</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>0.0009</td>
<td>0.0077</td>
<td><0.0001</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Sensitivity, specificity, predictive values of microscopy and RDT with nested-PCR as reference method for *Plasmodium* species detected

<table>
<thead>
<tr>
<th>Plasmodium spp.</th>
<th>Diagnostic tool</th>
<th>Sensitivity (%) (CI95)</th>
<th>Specificity (%) (CI95)</th>
<th>PPV (%) (CI95)</th>
<th>NPV (%) (CI95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. falciparum</td>
<td>Microscopy</td>
<td>72.5 (62.1-82.9)</td>
<td>79.3 (72.4-86.3)</td>
<td>74.4 (64.0-84.7)</td>
<td>85.0 (78.9-91.1)</td>
</tr>
<tr>
<td></td>
<td>SD BIOLINE malaria Ag</td>
<td>87.5 (79.6-95.4)</td>
<td>79.3 (72.4-86.3)</td>
<td>74.4 (64.0-84.7)</td>
<td>85.0 (78.9-91.1)</td>
</tr>
<tr>
<td>P. malariae</td>
<td>Microscopy</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>SD BIOLINE malaria Ag</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 5. Comparative details of light microscopy, SD BIOLINE malaria Ag and nested-PCR for *Plasmodium* detection and species identification

<table>
<thead>
<tr>
<th>Category according to nested-PCR</th>
<th>Number of samples</th>
<th>Light microscopy</th>
<th>SD BIOLINE malaria Ag</th>
<th>Nested-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concordant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True positive</td>
<td>58</td>
<td>P. falciparum</td>
<td>P. falciparum</td>
<td>P. falciparum</td>
</tr>
<tr>
<td>True negative</td>
<td>115</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Discordant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True positive</td>
<td>1</td>
<td>Negative</td>
<td>Pan</td>
<td>P. malariae</td>
</tr>
<tr>
<td>True positive</td>
<td>12</td>
<td>Negative</td>
<td>P. falciparum</td>
<td>P. falciparum</td>
</tr>
<tr>
<td>True positive</td>
<td>10</td>
<td>Negative</td>
<td>Negative</td>
<td>P. falciparum</td>
</tr>
<tr>
<td>False positive</td>
<td>9</td>
<td>Negative</td>
<td>P. falciparum</td>
<td>Negative</td>
</tr>
<tr>
<td>False positive</td>
<td>20</td>
<td>Positive</td>
<td>P. falciparum</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Pan: Specific to other Plasmodium species (P. vivax, P. malariae or P. ovale)
4. DISCUSSION

Malaria is endemic throughout much of the Angolan territory, and is by far the highest cause of morbidity and mortality particularly among children less than five years old and pregnant women. The true burden of malaria in Luanda has been a matter of debate [37].

The *Plasmodium* positive values determined by microscopy, RDT and nested-PCR in this study varied between 34.7 - 44.4% according to the selected diagnostic in patients (children’s and adults). According to nested-PCR the positive was 36.0%. Higher prevalence was obtained in asymptomatic children under five year (45%) in a different province of Angola [27]. However, lower prevalence were described also in this country by Mendes et al. [38] (28.9%) and Fançony et al. [6,28] (15.9%) when studied in asymptomatic children older than two month and a group of children up to 15 years and adult mothers, respectively.

It has long been established that a proportion of individuals with malaria have low-density infections that are unlikely to be detected by conventional microscopy. In our study, 23 cases were negative by microscopy but infection was detected by nested-PCR. Microscopy is reported to detect about 75 % of malaria infection in high transmission areas, whereas in low transmission areas, this method has been reported to miss up to 88% of infections [39].

The use of nested-PCR as a reference method was done when it was noted that it presented the highest sensitivity in comparison to microscopy and RDTs [21-26]. Considering the principle of this molecular assay, in which small fragments of *Plasmodium* DNA can be detected, the results were not surprising [40].

In the present study, the sensitivity of microscopy for the diagnosis of *P. falciparum* was considerably higher (71.60%) in comparison to other studies developed in Angola by Fortes et al. [27] and Fançony et al. [28], who studied 1012 asymptomatic children and 3307 people, respectively. The sensitivity of the microscopy taking into account the nested-PCR as a gold standard was 59% and 60%, in these studies respectively. Moura et al. [7] reported 66.7% of the total sensitivity of microscopy using the real-time quantitative polymerase chain reaction (qPCR) as a gold standard, in one study developed in different hospital laboratories for three provinces of Angola (Luanda, Benguela and Bengo). In spite of the inherent limitations of malaria microscopy, the quality of microscopic diagnosis largely depends on the quality of training. On the one hand, adequate training can increase the yield of accurate malaria diagnosis. This result was possible for the adequate intervention developed prior to this study in order to increase the knowledge and expertise in the microscopy of *Plasmodium* species [29]. Moura et al. [7] assess the impact of the training course on the knowledge of technicians, quality of blood smears preparation, and accuracy of microscopy malaria diagnosis using qPCR as a reference method in Angola. However, no significant increase of sensitivity or specificity after the training course was registered, but in some laboratories the sensitivity and specificity increase after completing the training course. For example, the microscopy sensitivity in the Luanda laboratory was 75% after the course (72.9% before course); this result showed the same sensitivity as that in our study. The high sensitivity is particular important because of the risk of untreated cases of malaria, a potentially lethal disease [7]. The better microscopic diagnosis helps to reduce illness, potential death, mistreatment and persistently high disease burden while at the same time saving vital resources for malaria control [41].

Thirteen (56.5%) of the 23 false negative microscopy (which were negative by microscopy, but positive by nested-PCR as a reference method) were positive by RDT. Ten (43.5%) of the 23 false negative microscopy samples were negative by RDT. Twenty (100%) of the false positive microscopy (which were positive by microscopy, but negative by nested-PCR as a reference method) were positive by RDT.

The false negative RDT (10 patients) (which were negative by RDT, but positive by nested-PCR) were negative by microscopy. Twenty (69%) of the 29 false positive RDT samples (which were positive by RDT but negative by nested-PCR) were confirmed to be positive by microscopy. Nine (31%) of the 29 false positive RDT samples were negative by microscopy.

Among microscopy and RDT negative patients (125), 10 cases tested positive by nested-PCR, all infected with *P. falciparum*. This represents 8% of the infected subjects that were not detected by microscopy and RDT.
The high specificity of microscopy is important for reducing the waste of limited resources, the increase of costs for drugs, unnecessary exposure of patients to the adverse effect of anti-malarial medication, for avoiding drug resistance, and also for prompting clinicians to look for other causes of illness [7,42]. The specificity of microscopy in our study was 86.1%. Moura et al. [7] showed 83.8% of total microscopy specificity using qPCR as a gold standard; however, higher specificity of 91.1% and 98.8% were reported in the Luanda and Benguela laboratories, respectively. Fançony et al. [28] reported 92.5% of specificity using PCR as a gold standard. However, lower values (73%) were showed by Fortes et al. [27].

One case was identified by RDT as non-\textit{P. falciparum} and by nested-PCR as \textit{P. malariae}, but none by microscopy. Parasite density of non-\textit{falciparum Plasmodium} infection is usually low and therefore easily missed by microscopy. Fançony et al. [6] also could not identify malaria parasites other than \textit{P. falciparum} by microscopy.

The non-concordant microscopy positive/nested-PCR negative (20) cases can also be attributed to blood if the preparation generates artifacts commonly mistaken for malaria parasites even after the training course, including bacteria, fungi, stain precipitation, and dirt and cell debris or normal blood components such as platelets also confound diagnosis [43]. However, it is possible also that the degradation of parasite DNA or low parasitemia combined with degradation of parasite DNA were responsible for negative nested-PCR results [44].

RDT was significantly more sensitive than microscopy. Although SD BIOLINE Malaria Ag test is a sensitive and relatively specific assay; it is not applicable for differentiation between malaria species. The accuracy (sensitivity and specificity) of RDT is mostly dependent on the parasite species, transmission intensity, parasite density, amount of circulating antigens, local polymorphisms of target antigen and persistence of antigens after treatment [45-46].

According to nested-PCR as a reference method, 29 patients were false positive by RDT. RDT is known to produce false-positive results by cross-reactivity with the heterophile antibodies [47] and because of residual antigen, which can persist for weeks after treatment [48]. The pLDH enzyme - expressed by viable parasites - declines rapidly after therapy but is also expressed by gametocytes [45]. The false negative RDT (10 patients) were due to low parasitemia as in the majority of cases or by interpreting the RDT before the test line has fully developed [49]. Recently, Dzakah et al. [50] demonstrated that a combination of aldolase and LDH in RDTs for the rapid diagnosis will enhance the sensitivity of the assay and reduce misdiagnosis. Other RDTs will be evaluated in Angola context in future research.

Nested-PCR allows for the detection of low density infections and even more importantly of mixed infections, which are routinely missed in microscopy [51], and this makes nested-PCR an ideal confirmatory test for malaria diagnosis [41]. In the present study, the molecular assays revealed 23 additional single infections (22 \textit{P. falciparum} and one \textit{P. malariae}) missed by microscopy, probably due to the very low presence of \textit{Plasmodium} spp. [30,52-53]. Among them 10 (8%) samples were also considered negative. These results like many others already described in the literature demonstrate the considerably high potential of molecular methods for detecting low parasite densities and subclinical infections, negative by microscopy and/or RDT [26,30,41,52-53], and emphasizes once again the usefulness of molecular methods in the diagnosis of malaria as compared to the traditional microscopic or RDT.

The literature regarding malaria species other than \textit{P. falciparum} in Angola is limited [6]. The dominant species in this study was \textit{P. falciparum} (98.8%). This result is in concordance with the \textit{Plasmodium} species report that concluded \textit{P. falciparum} is a responsible for more than 90% of all infections [54]. \textit{P. malaria} was less prevalent (1.2%) which is the same as previously reported in Angola [6,27,38]. No \textit{Plasmodium} mixed infections were reported in our study. However, in Angola the mixed infection has been reported by different authors [6,27,38].

5. CONCLUSION

In this study we demonstrated that RDT were significantly more sensitive than microscopy, and that this test is a rapid diagnostic test, is not labor-intense but is more costly than microscopy. These findings support the need of using RDT in the diagnosis of \textit{Plasmodium}. However the sensitivity of microscopy was higher in comparison with other studies reported in Angola.
and may be due to the microscopist training course developed before the study. The nested-PCR is time- and labour-consuming and required expensive reagents and infrastructure. However, our results confirmed the considerable sensitivity of nested-PCR for detection of cases that remain undiagnosed by microscopy and RDT. PCR appears to be a useful method for detecting Plasmodium parasites during active malaria surveillance in Angola. This study contributes to the limited literature regarding malaria species in Angola. Only single infections were detected, with the P. falciparum infection reported in the majority of positive cases, and the other species detected to a limited extent was P. malariae.

CONSENT

All authors declare that written informed consent was obtained from the patients.

ETHICAL APPROVAL

All authors hereby declare that all experiments have been examined and approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 declaration of Helsinki.

ACKNOWLEDGEMENTS

The authors would like to thank all researchers and technicians whose support was fundamental to this study. We also thank to the National Malaria Control Program and Malaria National Reference Laboratory of the Health National Institute of Angola.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

33. McNemar Q. Note on the sampling error of the difference between correlated

© 2015 Pembele et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://sciencedomain.org/review-history/10104